Sets
The galactic.algebras.set
module.
It defines several set classes:
FrozenFIFOSet
for creating frozen FIFO sets;FIFOSet
for creating FIFO sets;IntegerSet
for creating compact sets of integers;FiniteUniverse
for creating finite universes;FiniteSubSet
for creating subset of finite universes;
- class FrozenFIFOSet(*args)
Bases:
Set
[_T
]It represents frozen sets that keep the FIFO order.
Initialise an instance using 0 or 1 argument that should be iterable.
- Parameters:
- Raises:
Examples
>>> from galactic.algebras.set import FrozenFIFOSet >>> a = FrozenFIFOSet[int]([3, 5, 1, 2, 6, 2]) >>> a <galactic.algebras.set.FrozenFIFOSet object at 0x...> >>> list(a) [3, 5, 1, 2, 6] >>> list(a | FrozenFIFOSet[int]([1, 5, 7 ,8, 9])) [3, 5, 1, 2, 6, 7, 8, 9]
- copy()
Compute a copy of this set.
- Returns:
A copy of this set.
- Return type:
Self
- property head: _T
Return the first value of the set.
- Returns:
The first value.
- Return type:
_T
- Raises:
KeyError – If the set is empty.
- property tail: _T
Return the last value of the set.
- Returns:
The last value.
- Return type:
_T
- Raises:
KeyError – If the set is empty.
- isdisjoint(other)
Test if the set is disjoint from the other.
- issubset(other)
Test whether every element in the set is in other.
- issuperset(other)
Test whether every element in the other set is in the set.
- union(*others)
Compute the union of the set and the others.
- intersection(*others)
Compute the intersection between the set and the others.
- difference(*others)
Compute the difference between the set and the others.
- class FIFOSet(*args)
Bases:
FrozenFIFOSet
[_T
],MutableSet
[_T
]it represents mutable sets that keep the FIFO order.
Examples
- add(value)
Add the value to the set.
- remove(value)
Remove value from the set if it is present.
- discard(value)
Discard value from the set if it is present.
- pop()
Remove and return the first value of the set.
- Returns:
The value removed.
- Return type:
_T
- update(*others)
Update a set with the union of itself and others.
- intersection_update(*others)
Update a set with the intersection of itself and others.
- difference_update(*others)
Update a set with the difference of itself and others.
- symmetric_difference_update(other)
Update a set with the symmetric difference of itself and the other.
- move_to_end(value, last=True)
Move an existing value to either end of the set.
The value is moved to the right end if last is True (the default) or to the beginning if last is False.
- additem(value, last=True)
Add value to the set either at the beginning or at the end.
- class IntegerSet(intervals=None)
-
It represents subsets of set of integers.
- Parameters:
intervals (
Iterable
[tuple
[int
,int
]] |None
, default:None
) – An optional iterable of intervals.- Raises:
ValueError – If the intervals are not sorted.
ValueError – If an interval is empty.
Instances store membership using a compact array of intervals represented by –
an array of int. It uses –
inversion lists <https://en.wikipedia.org/wiki/Inversion_list>`_ as inne –
data structures. –
For example, the {0,1,3,4} subset will be represented by [0,2,3,5] meaning: –
* from element 0 (included) to element 2 (excluded) –
* from element 3 (included) to element 5 (excluded) –
Examples
>>> from galactic.algebras.set import IntegerSet >>> set1 = IntegerSet([(0, 2), (3, 5)]) >>> set1 <galactic.algebras.set.IntegerSet object at 0x...> >>> list(set1) [0, 1, 3, 4] >>> len(set1) 4 >>> 0 in set1 True >>> 5 in set1 False >>> set2 = IntegerSet([(1, 2), (3, 6)]) >>> list(set2) [1, 3, 4, 5] >>> list(set1 | set2) [0, 1, 3, 4, 5] >>> list(set1 & set2) [1, 3, 4] >>> list(set1 ^ set2) [0, 5] >>> set1 & set2 <= set1 True >>> set1 | set2 >= set1 True >>> set1.isdisjoint(set2) False
- classmethod from_iterable(iterable=None)
Create an instance from an iterable.
- copy()
Compute a copy of this set.
- Returns:
A copy of this set.
- Return type:
Self
- isdisjoint(other)
Test if the set is disjoint from the other.
- issubset(other)
Test whether every element in the set is in other.
- issuperset(other)
Test whether every element in the other set is in the set.
- union(*others)
Compute the union of the set and the others.
- intersection(*others)
Compute the intersection between the set and the others.
- difference(*others)
Compute the difference between the set and the others.
- symmetric_difference(other)
Compute the symmetric difference between the set and the other.
- intervals()
Get an iterator over the intervals.
- class FiniteUniverse(iterable)
-
It represents finite universes.
- Parameters:
Examples
>>> from galactic.algebras.set import FiniteUniverse >>> universe = FiniteUniverse[str]("abc") >>> universe <galactic.algebras.set.FiniteUniverse object at 0x...> >>> list(universe) ['a', 'b', 'c'] >>> list(reversed(universe)) ['c', 'b', 'a'] >>> universe.index('c') 2 >>> universe.count('c') 1 >>> universe.count('g') 0 >>> list(universe.whole) ['a', 'b', 'c'] >>> [list(singleton) for singleton in universe.singletons()] [['a'], ['b'], ['c']] >>> [list(subset) for subset in universe.parts()] [[], ['a'], ['b'], ['c'], ['a', 'b'], ['a', 'c'], ['b', 'c'], ['a', 'b', 'c']]
- index(value, start=None, stop=None)
Get the index of a value.
- Parameters:
- Returns:
The index requested.
- Return type:
- Raises:
ValueError – If the value is not in the universe or not found in the interval.
- count(value)
Get the total number of occurrences of value.
- parts(inf=None, sup=None)
Get an iterator over the parts of this universe.
- Parameters:
- Returns:
An iterator over the selected parts of this universe
- Return type:
Iterator[FiniteSubSet[_T]]
- singletons()
Get an iterator over the singletons of this universe.
- Returns:
An iterator over the singletons of this universe
- Return type:
Iterator[FiniteSubSet[_T]]
- property empty: FiniteSubSet[_T]
Get the empty subset of this universe.
- Returns:
The empty subset.
- Return type:
FiniteSubSet[_T]
- property whole: FiniteSubSet[_T]
Get the whole subset of this universe.
- Returns:
The whole subset.
- Return type:
FiniteSubSet[_T]
- class FiniteSubSet(universe, elements=None)
Bases:
Set
[_T
]It represents subsets of a finite universe.
Instances stores membership using a compact array of intervals represented by an array of int. For example, using the
abcdef
universe, theabde
subset will be represented by[0,2,3,5]
meaning:from element
0
(included) to element2
(excluded) of universefrom element
3
(included) to element5
(excluded) of universe
- Parameters:
universe (
FiniteUniverse
[TypeVar
(_T
)]) – A finite universe.elements (
Iterable
[TypeVar
(_T
)] |None
, default:None
) – An optional iterable.
Examples
>>> from galactic.algebras.set import FiniteUniverse, FiniteSubSet >>> from pprint import pprint >>> universe = FiniteUniverse[str]("abcdef") >>> universe <galactic.algebras.set.FiniteUniverse object at 0x...> >>> set1 = FiniteSubSet[str].from_intervals(universe, [(0, 2), (3, 5)]) >>> set1 <galactic.algebras.set.FiniteSubSet object at 0x...> >>> list(set1.universe) ['a', 'b', 'c', 'd', 'e', 'f'] >>> len(set1) 4 >>> "a" in set1 True >>> "f" in set1 False >>> list(~set1) ['c', 'f'] >>> set2 = FiniteSubSet[str](universe, "bdef") >>> set2 <galactic.algebras.set.FiniteSubSet object at 0x...> >>> list(set2.intervals()) [(1, 2), (3, 6)] >>> list(set1 | set2) ['a', 'b', 'd', 'e', 'f'] >>> list((set1 | set2).intervals()) [(0, 2), (3, 6)] >>> list(set1 & set2) ['b', 'd', 'e'] >>> list(set1 ^ set2) ['a', 'f'] >>> set1 & set2 <= set1 True >>> set1 | set2 >= set1 True >>> set1.isdisjoint(set2) False >>> pprint([list(subset) for subset in set1.subsets()]) [[], ['a'], ['b'], ['d'], ['e'], ['a', 'b'], ['a', 'd'], ['a', 'e'], ['b', 'd'], ['b', 'e'], ['d', 'e'], ['a', 'b', 'd'], ['a', 'b', 'e'], ['a', 'd', 'e'], ['b', 'd', 'e'], ['a', 'b', 'd', 'e']] >>> pprint([list(superset) for superset in set1.supersets(strict=True)]) [['a', 'b', 'c', 'd', 'e'], ['a', 'b', 'd', 'e', 'f'], ['a', 'b', 'c', 'd', 'e', 'f']]
- copy()
Compute a copy of this set.
- Returns:
A copy of this set.
- Return type:
Self
- classmethod from_intervals(universe, intervals=None)
Create an instance.
- Parameters:
- Returns:
The new set.
- Return type:
Self
- Raises:
ValueError – If a mark is outside of the universe.
- isdisjoint(other)
Test if the set is disjoint from the other.
- issubset(other)
Test if the set is a subset of the other.
- issuperset(other)
Test if the set is a superset of the other.
- union(*others)
Compute the union of the set and the others.
- intersection(*others)
Compute the intersection between the set and the others.
- difference(*others)
Compute the difference between the set and the others.
- symmetric_difference(other)
Compute the symmetric difference between the set and the other.
- intervals()
Get an iterator over the intervals.
- ranges()
Get an iterator over the ranges.
- Returns:
An iterator over the ranges.
- Return type:
Iterator[range]
- subsets(strict=None)
Get an iterator over the subset of this set (including itself).
- supersets(strict=None)
Get an iterator over the supersets of this set (including itself).
- property universe: FiniteUniverse[_T]
Get the underlying universe.
- Returns:
The underlying universe.
- Return type:
FiniteUniverse[_T]