

Sequential plugins Strings, Chains, Sequences, Intervals

The **GALACTIC** Organization <contact@thegalactic.org>

 $^1 \odot$ 2019-2022 the **GALACTIC** Organization. This document is licensed under CC-by-nc-nd (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en)

The GALACTIC Organization <contact@thegalactic.org>

Sequential plugins

Conclusion

Sequences

Sequences are built from a set of elements of the same type called Alphabet

For example, DNA is composed of a succession of nucleotides. There are four different nucleotides that constitute the alphabet,

 $\Sigma = \{adenosine (A), cytidine (C), guanosine (G), thymidine (T)\}.$

La F	Rochelle
Uni	versité

Sequences Sequential plugins

Sequential plugins

Sequences

Sequential plugins are developed for the **GALACTIC** framework to mine sequential data.

We distinguish 3 types of plugins.

Strategies

La Rochelle Université	Introduction Sequential characteristics Sequential descriptions Sequential strategies Examples Conclusion	Sequential characteristics
---------------------------	--	----------------------------

characteristics

Characteristics

Characteristics define the types of data taken for analysis. For example, binary data, numeric, sequential . . . etc.

We have implemented four plugins that represent four types of sequential data:

Strings	$a_1 a_2 \dots a_n$
Chains (sequences)	$[a_1, a_2, \ldots, a_n]$
Temporal sequences	$[(t_1, a_1), (t_2, a_2), \dots, (t_n, a_n)]$
Interval sequences	$[((\underline{t}_1,\overline{t}_1),a_1),((\underline{t}_2,\overline{t}_2),a_2),\ldots,((\underline{t}_n,\overline{t}_n),a_n)]$

Sequential descriptions

Descriptions

A description δ is an application which provides predicates describing a set of objects $A \subseteq G$ according to their characteristics.

Depending on the characteristics, We have implemented some descriptions that use predicates of several types "*subsequence* of", "*super-sequence* of", etc.

Descriptions	Predicates
Simple	Maximal common K-subsequences
Complete	Maximal common subsequences
Affix	Maximal subsequences: prefix-suffix
Distance	Maximal subsequences with distances
Time Frame	Maximal subsequences and minimal supersequences

La Roch	elle
Univers	sité

Sequential strategies

Strategies

A strategy σ refines a concept $(A, \delta(A))$ into subconcepts composed of a reduced set of objects $A' \subset A$ described by bigger subsequences $\delta(A) \sqsubseteq \delta(A')$. It corresponds to the generation of immediate predecessors in the lattice.

- Simple: with generation of all possible sub-sequences.
- Augmented: with generation of subsequences by adding an item of the alphabet to the predicates of the description.
- Distance: based on the distances between elements of the sequences.
- Alphabet: for the description of super-sequences; an element of the alphabet is removed each time.

|--|

Wine City

- This dataset is coming from the Wine City museum
- Gathered from the visits on a period of one year (May 2016 to May 2017).
- This dataset has been cleaned and processed before.
- Visitors navigate from modules to modules exploring the museum.
- ▶ The museum is open, and they are not "Guided".

Wine City GéoLuciole Multi-axis analysis using MCS description

Wine City

Figure 1: Modules location in the museum

La Rochelle	ion
Université	ics Wine City
Entropy of the sequential dearacteris	ons GéoLuciole
Université	jes Multi-axis analysis using MCS description
Exam	les
Conclu	ion

Wine City with prefix match

Using LimitFilter strategy with support = 5000 (100000 visitor)

The GALACTIC Organization <contact@thegalactic.org>

La Rochelle	ine City
Université	oLuciole
Conclusion	ulti-axis analysis using MCS description

Wine City with prefix match

....

\$12: #7702

sequence starts with '['M00', 'M03', 'M04', 'M05', 'M06']'

['Visitor_12', 'Visitor_24', 'Visitor_57', 'Visitor_75', 'Visitor_83', 'Visitor_103',

7% of visitors starts with M00 M03 M04 M05 M06

Wine City with prefix match

LimitFilter strategy with support = 150 (~9000 visitor)

The GALACTIC Organization <contact@thegalactic.org>

La Rochelle Université	Introduction Sequential characteristics Sequential descriptions Sequential strategies Examples Conclusion	Wine City GéoLuciole Multi-axis analysis using MCS description

GéoLuciole

- ► GPS trajectories of people's movements in the city of La Rochelle in France.
- The data have been collected by a specific application named GéoLuciole, developed for the DA3T² project.
- 20 trajectories.

²System for the Analysis of Numerical Traces for the development of Tourist Territories (Dispositif d'Analyse des Traces numériques pour la valorisation des Territoires Touristiques)

La Rochelle Université	Introduction Sequential characteristics Sequential descriptions Sequential strategies Examples Conclusion	Wine City GéoLuciole Multi-axis analysis using MCS description
---------------------------	---	---

GéoLuciole with Complete description

Middle strategy and Complete Description.

|--|

Axes

We consider three aspects (Axis) of a trajectory : Spatial, Movement and Activities Axis 1

```
["Centre-Ville", "La Guinguette", "Les Minimes", "Centre-Ville"]
```

Axis 2

```
["Stop", "Marche", "Marche", "Stop", "Stop", "Vélo", "Marche", "Stop"]
```

Axis 3

```
["Repas", "Repas", "Cinéma", "Repas", "Repos"]
```

Axis 1 using MCS description

Analysis for level 1, using MCS description

Number of predicates : 9

Axis 2 using MCS description

Analysis for level 2, using MCS description

Number of predicates : 24

Axis 3 using MCS description

Analysis for level 3, using MCS description

Number of predicates : 6

Multi-axis analysis using MCS description

Analysis for all axis, using MCS description

Number of predicates : 24 < 39 = 9 + 24 + 6

La Rochelle **Université**

Introduction Sequential characteristics Sequential descriptions Sequential strategies Examples Conclusion

Wine City GéoLuciole Multi-axis analysis using MCS description

Multi-axis analysis using MCS description

4 individuals make these subsequences for movement (action 2):

- stop, marche, stop, stop
- stop, marche, stop, stop, stop
- stop, marche, stop, stop, stop
- stop, marche, stop, marche, stop
- stop, vélo, vélo, marche, stop The same individuals also did these

activities (action 3):

- repas, repas, repas, repos
- 🕨 repas, cinéma, repas, repos

La Rochelle **Université**

Introduction Sequential characteristics Sequential descriptions Sequential strategies Examples Conclusion

Wine City GéoLuciole Multi-axis analysis using MCS description

Multi-axis analysis using MCS description

\$17: #2

action1 match '['La Guinguette', 'Les Minimes', 'Centre-Ville', 'Centre-Ville']' action2 match '['Stop', 'Vélo', 'Wárche', 'Stop', 'Stop']' action2 match '['Stop', 'Vélo', 'Marche', 'Stop', 'Stop']' action2 match '['Stop', 'Vélo', 'Marche', 'Stop', 'Stop']' action2 match '['Stop', 'Vélo', 'Marche', 'Stop', 'Marche', 'Stop']' action3 match '['Repos', 'Repas', 'Cinéma', 'Repas', 'Repos']' 2 individuals make these subsequences for spatial (action 1):

 La Guinguette, Les minimes, Centre ville, Centre ville

For the movement (action 2):

- stop, vélo, vélo, marche, stop, stop
- stop, vélo, marche, stop, stop
- stop, vélo, marche, stop, stop, stop
- stop, vélo, marche, stop, marche, stop And for the activities (action 3):
 - repos, repas, cinéma, repas, repos

|--|

Multi-axis analysis using MCS description

If we analyse the three levels separately we get:

- number of predicates: 39 = 9 + 24 + 6
- number of concepts: 61 = 11 + 24 + 16

With multi-axis we get:

number of predicates: 24number of concepts: 27

A Rochelle Iniversité Contential descrip Conclusion Con

Conclusion

We used the NEXTPRIORITYCONCEPT algorithm and the **GALACTIC** framework to analyse sequential data, we developed many kinds of descriptions and strategies representing different ways of analysing sequential data: strings, chains, sequences, and intervals.

La Rochelle Université Introduction Sequential characteristics Sequential descriptions Sequential strategies Examples Conclusion

Conclusion Contact

Contact

GALACTIC web site

https://galactic.univ-lr.fr

GALACTIC mailing list

https://ml.univ-lr.fr/sympa/info/galactic

THANKS

For listening ;)

