

Motivation
Introduction
The reduced context completion
Theorem
The algorithm of ReducedContextCompletion
Conclusion

## The ReducedContextCompletion Algorithm

Updating the reduced context of a lattice in linear time and linear memory

The Galactic Organization <contact@thegalactic.org>



<sup>&</sup>lt;sup>1</sup>© 2018-2022 the Galactic Organization. This document is licensed under CC-by-nc-nd (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en)

#### **Motivation**

# Exporting the FCA outside of its inner self

The FCA is a powerfull tool to deal with complex data, but the output can be hard to hard for non-lt users. The following work will be a first step to:

- Allow non-It users to uses FCA algorithms.
- ► Put the data-scientist in the center of the process.

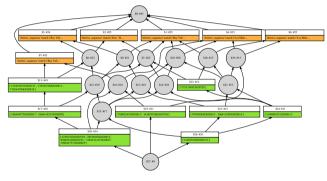


Figure 1: Sub-sequence match of touristics trajectories of La Rochelle

#### **Motivation**

# Exporting the FCA outside of its inner self

- Build in an iterative and intuitive way a lattice of concepts.
- Allow the user to change the strategy during the building of the lattice.

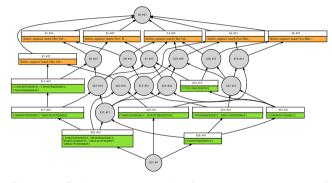


Figure 2: Sub-sequence match of touristics trajectories of La Rochelle

#### La Rochelle Université

#### Motivation Introduction

Conclusion

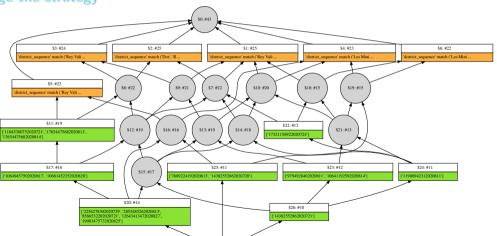
The reduced context completion
Theorem

The algorithm of ReducedContextCompletion

#### Motivation

nterractive navigation Example (Application on integer lattice) Exemple of the reduced context completion

#### Change the strategy



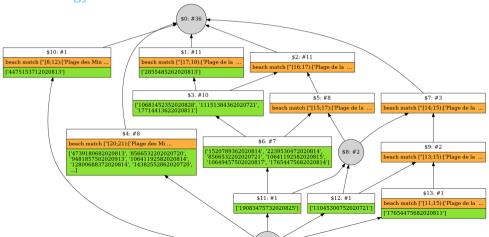
#### La Rochelle Université

Motivation
Introduction
The reduced context completion
Theorem
The algorithm of ReducedContextCompletion
Conclusion

#### Motivation

nterractive navigation Example (Application on integer lattice) Exemple of the reduced context completion

## Change the strategy



#### La Rochelle Université

# Motivation Introduction The reduced context completion Theorem The algorithm of ReducedContextCompletion Conclusion

#### Motivation

nterractive navigation Example (Application on integer lattice) Exemple of the reduced context completion

#### Change the strategy

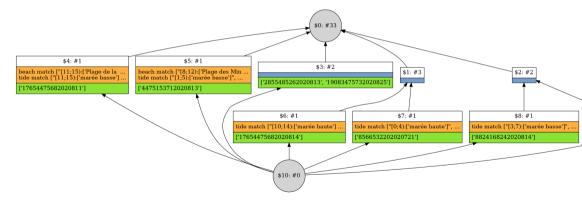


Figure 4



# Motivation Introduction The reduced context completion Theorem The algorithm of ReducedContextCompletion Conclusion

Motivation
Interractive navigation
Example (Application on integer lattice)
Exemple of the reduced context completion

#### A first step to the conceptual navigation into lattice-shaped data-structure:

#### The conceptual navigation

- ► Achieve a proper interactive navigation into complex data structures such as lattices.
- ▶ Put the data-scientist at the center of the analysis, because only him know the semantic of its data
- Giving the possibility to change strategies "on the road" (Allowed by the NextPriorityConcept algorithm)

#### A first step to the conceptual navigation into lattice-shaped data-structure :

#### The conceptual navigation

- ► Achieve a proper interactive navigation into complex data structures such as lattices.
- Put the data-scientist at the center of the analysis, because only him know the semantic of its data
- Giving the possibility to change strategies "on the road" (Allowed by the NextPriorityConcept algorithm)

#### Optimization of the solution

Rather than rebuilding the lattice (that can be huge) :

- Maintain a condensed form (the reduced context) of a lattice.
- Update this reduced context according to the changes made by the analysis.

# Motivation Introduction The reduced context completion Theorem The algorithm of ReducedContextCompletion

Motivation
Interractive navigation
Example (Application on integer lattice)
Exemple of the reduced context completion

#### prime factor lattice

#### Definition of a prime factor lattice

In the prime factor lattice, elements are tuple of prime number divisor. The meet operation between two points seeks the greatest common multiple of those two numbers, while the join operation return the greatest common divisor such as shown in figure 5.

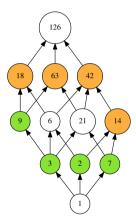


Figure 5: Example of a prime factor

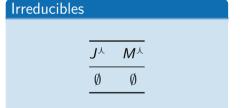
Motivation
Introduction
The reduced context completion
Theorem
The algorithm of ReducedContextCompletion
Conclusion

Motivation
Interractive navigation
Example (Application on integer lattice)
Exemple of the reduced context completion

 $x_1 = 2$ 



Figure 6: Initial lattice



Motivation
Interractive navigation
Example (Application on integer lattice)
Exemple of the reduced context completion

$$x_2 = 3$$

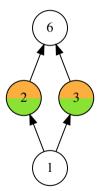


Figure 7: Add the element 3

### Irreducibles

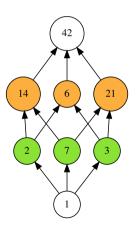
| $M^{eta}$      |
|----------------|
| (2,6)<br>(3,6) |
|                |

Motivation
Introduction
The reduced context completion
Theorem
The algorithm of ReducedContextCompletion
Conclusion

Motivation
Interractive navigation
Example (Application on integer lattice)

Exemple of the reduced context completion

$$x_3 = 7$$



#### Irreducibles

| $J^{\wedge}$            | M <sup>⊥</sup>                                 |
|-------------------------|------------------------------------------------|
| (1,3)<br>(1,2)<br>(1,7) | (2,2)<br>(3,3)<br>(2,42)<br>(14,42)<br>(21,42) |

Figure 8: Add the element 7

Motivation
Introduction
The reduced context completion
Theorem
The algorithm of ReducedContextCompletion
Conclusion

Motivation
Interractive navigation
Example (Application on integer lattice)

Exemple of the reduced context completion

$$x_4 = 9$$

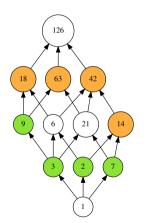


Figure 9: Add the element 9

| Irreducib | les |                    |   |
|-----------|-----|--------------------|---|
| J         | 人   | M <sup>∖</sup>     | • |
| (1        | ,3) | (6,6)              | • |
| (1        | ,2) | (42,14)            |   |
| (1        | ,7) | <del>(21,21)</del> |   |
| (1        | ,9) | (18,126)           |   |
|           |     | (63,126)           |   |
|           |     | (42,126)           |   |

#### **Relation order**

#### Ordinal definition

 $\leq$  is a binary relation on the set S which satisfy three properties such as :

- ightharpoonup  $\leq$  is **reflexive** : for all  $x \in S, x \leq x$
- $ightharpoonup \leq$  is **antisymmetric**: for all  $x,y\in S$  if  $x\leq y$  and  $y\leq x$  then x=y
- $ightharpoonup \le$  is **transitive** : with  $x, y, z \in S$ , if we have  $x \le y$  and  $y \le z$  then  $x \le z$ .



#### The meet and join operator

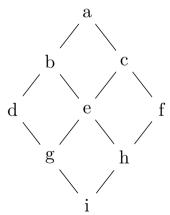
#### Ordinal definition

- The greatest lower bound of two elements (also named a join) x, y is noted  $x \lor y$  refers to the greatest element of the predecessors of both x and y such that  $z \le x$  and  $z \le y$ ,  $z \in S$ .
- The least upper bound of two elements (also named a meet) x, y is noted  $x \wedge y$  refers to the smallest element of the successor of both x and y such that  $x \geq z$  and  $y \geq z$ ,  $z \in S$ .
- ightharpoonup  $\lor$  and  $\land$  can be used to defines the partial order relation  $\le$  on S in the context of a lattice structure.

#### **Definition of a lattice**

#### Lattice definition

- ▶ A lattice  $L = \langle S, \leq \rangle$  is a poset such that  $x \vee y$  and  $x \wedge y$  exist for any x and  $y \in S$ .
- ▶ By considering  $\vee$  and  $\wedge$  as meet and join operators, we can also defines a lattice as  $L = \langle S, \vee, \wedge \rangle^{S \neq \emptyset}$ .



#### The irreducible

#### Reduced context definition

- An element  $j \in S$  is called join-irreducible if for any subset X of S,  $j \neq \land X$ . We noted j a join-irreducible on the lattice L,  $j_L$ . The set of the join-irreducible of L is noted  $J_L$ . In a lattice, a join-irreducible element only has one immediate predecessor noted  $j^-$ .
- An element  $m \in S$  is called meet-irreducible if for any subset X of S,  $m \neq \lor X$ . We noted m a join-irreducible on the lattice L,  $m_L$ . The set of the meet-irreducible of L is noted  $M_L$ . In a lattice, a meet-irreducible element only has one immediate successor noted  $m^+$ .



#### The irreducible

#### Lattice definition

Irreducible elements of a lattice can't be obtain by  $\lor$  operator (for join irreducible) or  $\land$  (for meet irreducible), they represent the very structure of a lattice.

- We can't have more join irreducible elements than the number of individuals in our data.
- We can't have more meet irreducible elements than the number of different attributes in all our individuals.



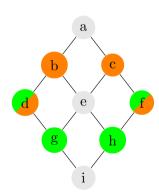


Figure 11: Lattice L, with colored join irreducible and meet irreducible

#### The reduced context definition

#### Reduced context definition

▶ The reduced context (Also called the table) of a lattice is defined as both all elements in  $J_L$  and  $M_L$  and the relational order < on S such that  $R_L = \langle J_L, M_L, < \rangle$ .

Motivation Introduction

Based on the fundamental theorem, any lattice L is isomorphic to the concept lattice of its reduced context, we can then rebuilt any lattice L based on its irreducible.

#### The reduced context definition

### Maintaining the reduced context

- As we can rebuild a lattice L from its reduced context (And as the reduced context only contains irreducible elements and binaries operators of L), we only need to stock the structure R.
- $\triangleright$  By maintaining and working only on  $R_L$ , we drastically reduce the number of elements to take into account during the process and the storage.

#### **Definition:** joins and immediate predecessors

#### Covering relation between joins and immediate predecessors

For the purpose of the algorithm, we introduce a covering relation between joins irreducible and theirs immediate predecessor such as:

$$^{L} \prec_{|J} = \{(j^{-}, j) | j \in J\}$$

Where we note  $J_L^{\lambda} = {}^L \prec_{|J}$  such that  $J_L^{\lambda}$  is a list of couple  $(j^-, j)$ .

#### Definition: meets and immediate successors

#### Covering relation between meets and immediate successors

For the purpose of the algorithm, we introduce a covering relation between meets irreducible and theirs immediate successors such as :

$$^{L} \prec_{|M} = \{(m, m^+) | m \in M\}$$

Motivation

Theorem

Where we note  $M_L^{\perp} = {}^L \prec_{|M|}$  such that  $M_L^{\perp}$  is a list of couple  $(m, m^+)$ .

Motivation

Theorem

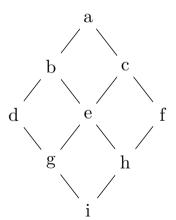
Conclusion

#### **Example**

### Example

In the following example figure 19 we have :

| $J_L^{\wedge}$ | $M_L^{\perp}$ |
|----------------|---------------|
| (i,g)          | (a,b)         |
| (i,h)          | (a,c)         |
| (g,d)          | (b,d)         |
| (h,f)          | (c,f)         |





#### **Problematic**

#### Two sets of couple

In this work, we will uses a special reduced context of L where  $R_L^{\wedge} = \langle J_L^{\wedge}, M_L^{\wedge}, \wedge, \vee \rangle$ .

Motivation Introduction

Theorem

#### Two sets of couple

Based on  $R_L^{\lambda}$ , the reduced context of L, and X,  $X \subseteq S$ , find the reduced context  $R_{L_X}^{\lambda}$  of the sublattice  $L_X$ ,  $L_X \subseteq L$ , the smallest lattice containing X.

#### The reduce context completion function

#### Foreword

- Let L be a finite lattice, with a bottom element noted  $\perp_L$  and a top element noted  $\top_L$
- With  $\mathcal{CL}$  an application that build a the concept lattice, where  $L = \mathcal{CL}(\langle M_X^{\downarrow}, J_X^{\downarrow}, \top_X, \bot_X, \wedge, \vee \rangle)$
- ▶ Let  $L_X = \mathcal{CL}(\langle M_X^{\wedge}, J_X^{\wedge}, \top_X, \bot_X, \wedge, \vee \rangle)$ , the smallest lattice containing  $X \subseteq S$ .

#### The $\lambda$ case

We introduce  $\lambda$ , a particular case where  $\lambda^x = \mathcal{CL}(\langle \emptyset, \emptyset, x, x, \wedge, \vee, \rangle)$  is a lattice that only contains an element  $\{x\}$  and the knowledge of join and meet operator of L.

#### The reduce context completion function

#### The reduce context completion function

 $\kappa$  is our reduced context completion function, returning the smallest sub-lattice of L with the element  $\{x\}$ . Where the function  $\kappa^x$  find  $J_x^{\wedge}$ ,  $M_x^{\wedge}$  from the reduced context of L, the minimal number of irreducible from L required to build  $L_x$ , the smallest lattice containing the element  $\{x\}$ ; based on  $\wedge$  and  $\vee$  operator of L.

With  $X = \{x_1, x_2..x_n\}$  we note :

$$L_X = \mathcal{CL}(\kappa^{x_1}(\kappa^{x_2}(\dots \lambda^{x_n}))) = \mathcal{CL}(\langle M_X^{\downarrow}, J_X^{\downarrow}, \top_X, \bot_X, \wedge, \vee \rangle)$$

#### **Example**

#### Exemple of a reduced context completion

Let L be a lattice  $L = \langle S, \leq \rangle$ . Let compute the reduced context completion with a subset of S,  $X = \{b, e, d, c\}$  and the goal is to find  $L_X$  such that :

$$L_X = \mathcal{CL}(\langle M_X^{\downarrow}, J_X^{\downarrow}, \top_X, \bot_X, \wedge, \vee \rangle) = \mathcal{CL}(\kappa^c(\kappa^d(\kappa^e(\lambda^b))))$$

#### **Initialisation**

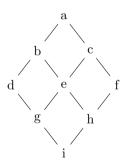


Figure 13: Lattice L 
$$< S, \lor, \land >$$

The original lattice 
$$L = \langle S, \leq \rangle$$
,  $S = \{a, b, c, d, e, f, g, h, i\}$ 

#### n=1

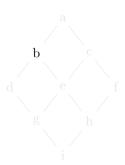


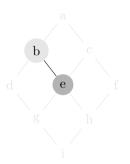
Figure 14:  $\lambda^b$ 

We create the first sub-lattice  $\lambda^b$  where  $\lambda^b = \mathcal{CL}(\langle \emptyset, \emptyset, b, b, \wedge, \vee, \rangle)$ 



La Rochelle

Université



Apply the function of reduced context completion  $\kappa^e(\lambda^b)$  on L, resulting in the sub-lattice noted  $L_1 = \mathcal{CL}(\langle \{(e,b)\}, \{(e,b)\}, b, e, \land, \lor \rangle)$ 

Figure 15: The sub-lattice  $L_2$ 





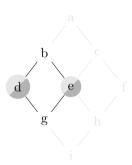
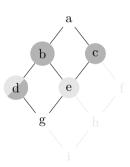


Figure 16: The sub-lattice  $L_3$ 

Apply the function of reduced context completion  $\kappa^d(L_1)$  on L, resulting in the sub-lattice noted  $L_2 = \mathcal{CL}(\langle \{(g,d),(g,e)\},\{(d,b),(e,b)\},b,g,\wedge,\vee\rangle)$ 







Apply the function of reduced context completion  $\kappa^c(L_2)$  on L, resulting in the sub-lattice  $\kappa^n(\lambda^b)$  noted  $L_3 = \mathcal{CL}(\langle \{(g,d),(g,e)\},\{(d,b),(c,a),(b,a)\},a,g,\wedge,\vee\rangle)$ 

Figure 17: The sub-lattice  $L_3$ 

#### **Theorem**

#### Theorem

Given a lattice  $\mathcal{L} = (S, \wedge, \vee)$ , then the algorithm reduced completion computes the minimal sublattice of  $\mathcal{L}$  containing a subset  $X \subseteq S$ .

#### Lattice of sublattices

#### The lattice of sublattices

Let us consider each sublattice of  $\mathcal L$  given by its set of elements, and the relation between these sublattices by inclusion on these sets of elements. The Moore family of all the sublattices of  $\mathcal L$  equipped with this inclusion relation, and an emptyset  $\emptyset$  forms a lattice.

The lattice of sublattice.

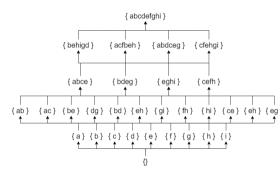


Figure 18: The lattice of the Moore families of sublattices of  $\mathcal{L}$  (Partial)

Motivation Introduction The reduced context completion Theorem

Conclusion

The algorithm of ReducedContextCompletion

Theorem Proof

#### **Lattice of sublattices**

A lattice L

Theorem Proof

#### **Lattice of sublattices**

#### **Theorem**

With  $\varphi$  as closure operator. The smallest sublattice of  $\mathcal{L}$  containing X is then uniquely defined as  $\mathcal{CL}(\varphi(X))$  in this lattice of sublattices.



#### **Lattice of sublattices**

#### **Theorem**

With  $\varphi$  as closure operator. The smallest sublattice of  $\mathcal{L}$  containing X is then uniquely defined as  $\mathcal{CL}(\varphi(X))$  in this lattice of sublattices.

### Closure operator

A closure operator is a function on a set S that satisfy :

- $ightharpoonup X \subset \varphi(X)$  : Extensive
- $ightharpoonup X \subset Y o \varphi(X) \subset \varphi(Y)$  : Isotone
- $ightharpoonup \varphi(\varphi(X)) = \varphi(X)$  : Idempotent

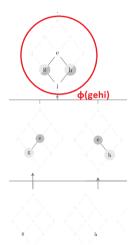
Closure operator are determined by their **closed set** (Or Moore Families . . . ). The closure  $\varphi(X)$  of a set X is the smallest set containing X.

#### **Problems definition**

### Problems definition

The algorithm successively computed a reduced context for  $x_1$ , then  $x_2$ , ..., then  $x_n$ . Let  $X_i$  be the set of element of the lattice of the reduced context computed at each iteration, i.e. for  $\{x_1,..,x_i\}$ . Then  $X_n$  is the set of elements of the reduced context of the lattice computed by the algorithm.

Therefore we have to proove that the algorithm computes the minimal set of elements that generate  $\mathcal{CL}(\varphi(X))$ , i.e. that  $X_n = \mathcal{CL}(\varphi(X))$ .



### **Proof**

### Proof

Let us assume that we have the reduced context of the smallest context containing  $\{x_1,..,x_{i-1}\}$ , then  $X_{i-1}=\mathcal{CL}(\varphi(\{x_1,..,x_{i-1}\}))$ .  $\kappa$  computes the reduced context of the smallest sublattice containing  $X_{i-1}\cup\{x_i\}\subseteq X_i$ . Then  $X_i$  is the smallest lattice containing  $\mathcal{CL}(\varphi(\{x_1,..,x_{i-1}\}\cup\{x_i\}))$ . Therefore  $X_i=\mathcal{CL}(\varphi(\{x_1,..,x_{i-1}\}))$ , and by recursion,  $X_n=\mathcal{CL}(\varphi(X))$ .

### **Proof**

#### Proof

Let us assume that we have the reduced context of the smallest context containing  $\{x_1,..,x_{i-1}\}$ , then  $X_{i-1}=\mathcal{CL}(\varphi(\{x_1,..,x_{i-1}\}))$ .  $\kappa$  computes the reduced context of the smallest sublattice containing  $X_{i-1}\cup\{x_i\}\subseteq X_i$ . Then  $X_i$  is the smallest lattice containing  $\mathcal{CL}(\varphi(\{x_1,..,x_{i-1}\}\cup\{x_i\}))$ . Therefore  $X_i=\mathcal{CL}(\varphi(\{x_1,..,x_{i-1}\}))$ , and by recursion,  $X_n=\mathcal{CL}(\varphi(X))$ .

### Proof

 $X_i$  is composed of these updated irreducible elements, together with join and meet issued from these irreducible elements.

### **Proof**

### $\kappa$ is a closure operator

- ▶ This computation is extensive since  $X \subseteq X_n = \mathcal{CL}(\varphi(X))$ .
- Moreover, if  $\kappa$  is applied twice, then no element is added  $\mathcal{CL}(\varphi(\varphi(X))) = \mathcal{CL}(\varphi(X))$ : idempotent.
- And this computation add new irreducible elements to generate new elements, then it is isotone: if  $X \subseteq Y$  then  $\mathcal{CL}(\varphi(X)) \subseteq \mathcal{CL}(\varphi(Y))$ .



Input of the algorithme
Startup check
Add new maximum and new minimum
Extend maximum or\and minimum

### Input of the algorithme

### Input

- ► The reduced context of a lattice L
- $\triangleright$  An element  $x \in S$

# Output

▶ the reduced context of the sublattice  $L_X$ ,  $L_X \subseteq L$ 

Conclusion

Input of the algorithme
Startup check
Add new maximum and new minimur
Extend maximum or\and minimum

### The algorithm of ReducedContextCompletion

### Input

- $ightharpoonup M^{\perp}$ : Set of couples  $(m, m^+)$
- ▶  $J^{\perp}$  : Set of couples  $(j^-, j)$
- ightharpoonup : The top element of the current lattice
- $ightharpoonup \perp$ : The bottom element of the current lattice
- $ightharpoonup \wedge$  : The join operator of L
- ▶ ∨ : the meet operator of L
- ► X : Subset of S

### Three step

- Startup Check
- Maximum and minimum updating
- Irreducibles updating



Motivation Introduction The reduced context completion Theorem

Startup check
Add new maximum and new minimur
Extend maximum or\and minimum

### Startup check of ReducedContextCompletion

# Startup check

ightharpoonup if (.,x) in  $J^{\lambda}$ : continue

ightharpoonup if (x,.) in  $M^{\wedge}$ : continue

ightharpoonup if x is  $\top$  : continue

ightharpoonup if x is  $\bot$  : continue

The algorithm of ReducedContextCompletion

### Startup check of ReducedContextCompletion

## Startup check

ightharpoonup if (.,x) in  $J^{\wedge}$ : continue

ightharpoonup if (x,.) in  $M^{\wedge}$ : continue

▶ if x is  $\top$  : continue

ightharpoonup if x is  $\bot$  : continue

#### Maximum and minimum redefinition

▶ if  $x > \top$ : AddMaximum(x)

▶ if  $x < \bot$ : ADDMINIMUM(x)

▶ if  $x \not\leq \top$  nor  $\not\geq \top$ : EXTENDMAXIMUM(x)

▶ if  $x \not\leq \bot$  nor  $\not\geq \bot$ : EXTENDMINIMUM(x)

Input of the algorithme Startup check Add new maximum and new minimum Extend maximum or\and minimum The main execution

#### Add new maximum

# AddMaximum(x)

- ▶  $add(\top, x)$  in  $M^{\wedge}$  // add x as successor of  $\top$
- ▶  $add(x, \top)$  in  $J^{\wedge}$  // add  $\top$  as predecessor of x
- ightharpoonup T  $\leftarrow$  x // x become the new top element
- continue

Input of the algorithme
Startup check
Add new maximum and new minimum
Extend maximum or\and minimum
The main execution

#### Add new minimum

# addMinimum(x)

- ▶  $add(\bot,x)$  in  $J^{\land}$  // add x as predecessor of  $\bot$
- ▶  $add(x, \bot)$  in  $M^{\bot}$  // add  $\bot$  as successor of x
- $\blacktriangleright$   $\bot \leftarrow x // x$  become the bottom element
- continue

#### Extend a new maximum or new minimum

# ExtendMinimum(x)

- ▶  $\operatorname{add}((\bot \land x), \bot)$  in  $J^{\land}$  // Add the bottom element of  $\kappa^{\times}$  into the set of join irreducibles
- ▶  $\bot \leftarrow (\bot \land x)$  // Update bottom element

# ExtendMaximum(x)

- ▶  $add(T, (T \lor x))$  in  $M^{\land}$  // Add the top element of x into the set of meet irreducibles
- ▶  $\top \leftarrow (\top \lor x) / / \text{Update top element}$

#### Classical case: the main execution

# Setting immediate successor and immediate predecessor of x

At this step, x is between  $\top$  and  $\bot$ . We initialize  $\bot$  as potential immediate predecessor of  $x \in J^{\land}$ , and top as potential immediate successor of  $x \in M^{\land}$ , and then we maintain the irreducible.

- ightharpoonup add( $\perp, x$ ) in  $J^{\wedge}$
- ightharpoonup add $(x, \top)$  in  $M^{\wedge}$

#### Classical case: the main execution

# Setting immediate successor and immediate predecessor of x

At this step, x is between  $\top$  and  $\bot$ . We initialize  $\bot$  as potential immediate predecessor of  $x \in J^{\land}$ , and top as potential immediate successor of  $x \in M^{\land}$ , and then we maintain the irreducible.

- ightharpoonup add $(\bot,x)$  in  $J^{\wedge}$
- ightharpoonup add $(x, \top)$  in  $M^{\wedge}$

# Entering into the main execution

- ► INSERTJOINIRREDUCIBLE(x)
- ► INSERTMEETIRREDUCIBLE(x)

### Maintening the join and meet operator

# Maintening the join and meet operator

Currently, we are working on finite sub-lattice and therefore we maintain the join and meet operator. In case of a join-semi-lattice, we can only maintain the join operator (And only focus on join irreducible) and the same is also true for a meet-semi-lattice, where we only seeks for the meet irreducible. Future works will address this question directly, but for now, we are looking for both the join and meet irreducible.

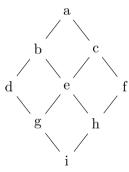


Figure 20: A lattice L

### Maintening the join and meet operator

# Maintening the join and meet operator

Currently, we are working on finite sub-lattice and therefore we maintain the join and meet operator. In case of a join-semi-la-ttice, we can only maintain the join operator (And only focus on join irreducible) and the same is also true for a meet-semi-lattice, where we only seeks for the meet irreducible. Future works will address this question directly, but for now, we are looking for both the join and meet irreducible.

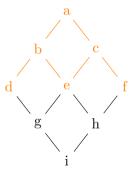


Figure 21: A join-semi-lattice from L

Input of the algorithme Startup check Add new maximum and new minimu Extend maximum or\and minimum The main execution

### Maintening the join and meet operator

# Maintening the join and meet operator

Currently, we are working on finite sub-lattice and therefore we maintain the join and meet operator. In case of a join-semi-lattice, we can only maintain the join operator (And only focus on join irreducible) and the same is also true for a meet-semi-lattice, where we only seeks for the meet irreducible. Future works will address this question directly, but for now, we are looking for both the join and meet irreducible.

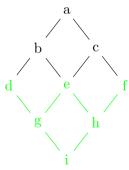


Figure 22: A meet-semi-lattice from L

### insertJoinIrreducible(x)

# insertJoinIrreducible(x)

```
for (j^-,j) in J^{\wedge} do
 \begin{vmatrix} r=j \wedge x \\ r^-=(j^- \wedge x) \vee (j \wedge x^-) \\ add(r-,r) \text{ in } J^{\wedge} \\ x^- \vee = r \\ j^- \vee = r \end{vmatrix}
```

```
for (j^-,j) in J^{\wedge} do

| if j^- == j then

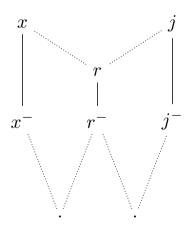
| remove(j^-,j) from J^{\wedge}

| end

end
```

Conclusion

Input of the algorithme
Startup check
Add new maximum and new minimu
Extend maximum or\and minimum
The main execution

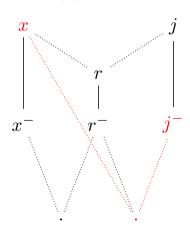


$$r = j \land x$$

$$x^- \land = r$$

$$j^- \land = r$$

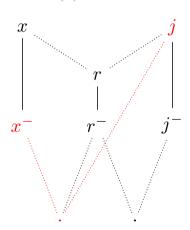
Input of the algorithme
Startup check
Add new maximum and new minimum
Extend maximum or\and minimum
The main execution





Conclusion

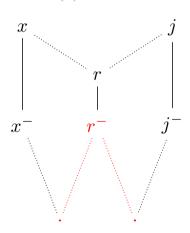
Input of the algorithme
Startup check
Add new maximum and new minimur
Extend maximum or\and minimum
The main execution





Conclusion

Input of the algorithme
Startup check
Add new maximum and new minimu
Extend maximum or\and minimum
The main execution



$$(j^- \wedge x) \vee (j \wedge x^-)$$

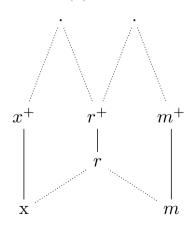
# insertMeetIrreducible(x)

# insertMeetIrreducible(x)

```
\begin{array}{ll} \textbf{for } (m,m^+) \ \textit{in } M^{\wedge} \ \textbf{do} \\ & | \ \textbf{if } m^+ == m \ \textbf{then} \\ & | \ \textit{remove}(m,m+) \ \textbf{from} \\ & | \ M^{\wedge} \\ & \textbf{end} \\ \textbf{end} \end{array}
```

Conclusion

Input of the algorithme Startup check Add new maximum and new minimu Extend maximum or\and minimum The main execution

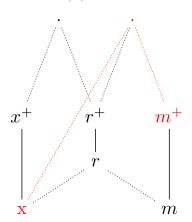


$$r = m \lor x$$

$$x^+ \lor = r$$

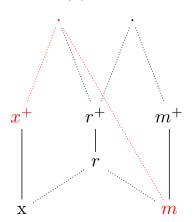
$$m^+ \lor = r$$

Input of the algorithme Startup check Add new maximum and new minimur Extend maximum or\and minimum The main execution





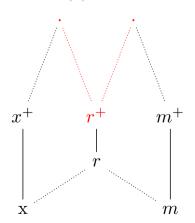
Input of the algorithme
Startup check
Add new maximum and new minimum
Extend maximum or\and minimum
The main execution





Conclusion

Input of the algorithme
Startup check
Add new maximum and new minimum
Extend maximum or\and minimum
The main execution



$$r^+ = (m^+ \vee x) \wedge (m \vee x^+)$$



Input of the algorithme
Startup check
Add new maximum and new minimum
Extend maximum or\and minimum
The main execution

#### **Theorem**

### Theorem

At the end of the algorithm  $\langle J^{\wedge}, M^{\wedge}, \top, \bot, \vee, \wedge \rangle$  is the reduced context of  $L_X$ .

#### **Conclusion**

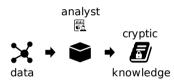


Figure 31: Deep learning

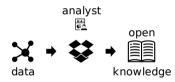


Figure 32: FCA

#### **Conclusion**

#### Future works

The reduced context completion, is a first step in data navigation, but not only. With this algorithm, we are able to only work on reduced contexts of lattices, drastically reducing the number of elements to take into account.



