

GALACTIC architecture

The **GALACTIC** Organization <contact@thegalactic.org>

 1 © 2018-2023 the **GALACTIC** Organization. This document is licensed under CC-by-nc-nd (https://creativecommons.org/licenses/bv-nc-nd/4.0/deed.en)

Acronym

GALACTIC stands for

GAlois

LAttices.

Concept

Theory,

Implicational systems and

Closures.

Purpose

GALACTIC framework

Develop a framework on:

- **Lattice** theory
- Formal Concept Analysis^b.

 $^{\alpha}$ BARBUT, Marc et MONJARDET, Bernard. Ordre et classification, vols. 1 and 2. Hachette, Paris, France, 1970.

^bGANTER, Bernhard et WILLE, Rudolf. Formal concept analysis: mathematical foundations. Springer Science & Business Media, 1999.

La Rochelle Université Architecture
Examples

rchitecture

Plugins

Application:

Jupyter notebooks

Collaborative version control

Architecture

Architecture

Plugins

Applications

Collaborative version centre

Architecture

Written in python, Fully extensible

The **GALACTIC** framework is architecturally designed with:

a core library

Architecture

Plugins

Application

Jupyter notebooks

Collaborative version control

Architecture

Written in python, Fully extensible

- a core library
- applications

Architecture

Plugins

Applications

Jupyter notebooks

Collaborative version contro

Architecture

Written in python, Fully extensible

- a core library
- applications
- characteristic plugins

Architecture

Plugins

Application

Jupyter notebooks

Collaborative version contro

Architecture

Written in python, Fully extensible

- a core library
- applications
- characteristic plugins
- description plugins

Architecture

Plugin:

Applications

Collaborative version contro

Architecture

Written in python, Fully extensible

- a core library
- applications
- characteristic plugins
- description plugins
- strategy plugins

Architecture

Plugins

Application

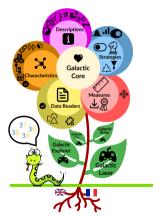
Jupyter notebooks

Collaborative version contro

Architecture

Written in python, Fully extensible

- a core library
- applications
- characteristic plugins
- description plugins
- strategy plugins
- measure plugins


Architecture

Plugins

Application:

Collaborative version contro

Architecture

Written in python, Fully extensible

- a core library
- applications
- characteristic plugins
- description plugins
- strategy plugins
- measure plugins
- data reader plugins

Architecture

Plugins

Applications

Jupyter notebooks

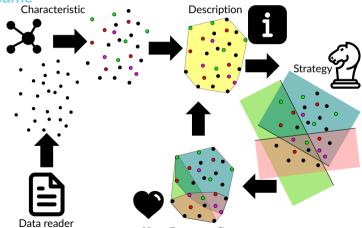
Collaborative version contro

Architecture

Written in python, Fully extensible

- a core library
- applications
- characteristic plugins
- description plugins
- strategy plugins
- measure plugins
- data reader plugins
- localization plugins

La Rochelle Université Introduction
Architecture
Examples
Conclusion


rchitecture

Plugins

Application:

Jupyter notebooks

Resume

La Rochelle Université Introduction
Architecture
Examples
Conclusion

rchitecture

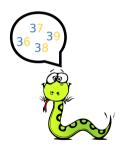
Plugins

Applications

Jupyter notebooks

Concept lattice

Architecture
Examples
Conclusion


Architecture

Application

Jupyter notebooks

Collaborative version control

Architecture

Core

The **GALACTIC** *core* defines the core library, it contains the basic operations and data structures and it implements the new generation algorithm (NEXTPRIORITYCONCEPT) inspired from pattern structures.

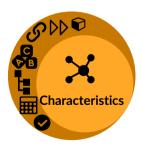
Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version cor

Characteristic Plugins

Definition

Characteristic plugins define characteristics such as numerical characteristics, boolean characteristics.

Existing characteristic plugins:


- ▶ Ø Boolean characteristics;
- La Categorical characteristics;
- & String characteristics;

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version cor

Characteristic Plugins

Definition

Characteristic plugins define characteristics such as numerical characteristics, boolean characteristics.

Existing characteristic plugins:

- S Chain characteristics:

 Output

 Description:

 Output

 Descri
- ► № Sequence characteristics.
- ➤ Triadic characteristics.

In preparation:

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version cor

Description Plugins

Definition

Description plugins define predicates and description spaces used to represent and to define data precisely.

Existing description plugins:

- ▶ Soolean descriptions;
- Logical descriptions;
- {} Categorical descriptions;
- » Mumerical descriptions;
- String descriptions using regex;
- ➤ String descriptions using distances;

Introduction
Architecture
Examples

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version con

Description Plugins

Definition

Description plugins define predicates and description spaces used to represent and to define data precisely.

Existing description plugins:

- Chain descriptions;
- Sequence descriptions;
- ► >> Sequence descriptions using distances;
- ▶ ₱ Triadic descriptions.

In preparation:

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version cor

Strategy Plugins

Definition

Strategy plugins define the way used to explore data, it uses descriptions to generate predecessors for each concept in the lattice.

Existing strategy plugins:

- ▶ Ø Boolean strategy;
- Logical strategy;
- Categorical strategy;
- A Numerical basic strategy;
- •II Numerical quantile strategy;
- String strategy;
- ➤ String strategy using distances;

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version con

Strategy Plugins

Definition

Strategy plugins define the way used to explore data, it uses descriptions to generate predecessors for each concept in the lattice.

Existing strategy plugins:

- Chain strategy;
- Sequence strategy;
- ► > Sequence strategy using distances;
- ➤ Triadic strategy.

In preparation:

Graph strategy.

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version con

Strategy Plugins

Definition

Strategy plugins define the way used to explore data, it uses descriptions to generate predecessors for each node in the lattice.

There are $3 \triangle$ meta-strategies in the core library:

- ▶ **T** Limit filter which limits the predecessors to those whose measure does not exceed the limit:
- Selection filter which selects the best or the worst predecessors;
- Conditioned strategy which triggers the execution of inner strategies when some conditions are met.

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version cor

Measure Plugins

Definition

Measure plugins are parameters of the *filter strategies* predefined in the core library.

There are 3 measures in the core library:

- ± predecessor Cardinality;
- ▼ successor Cardinality;
- R Confidence.

One measure plugin has been developed:

Entropy of the predecessor relatively to the successor.

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version co

Data Reader Plugins

Definition

Data readers plugins are used to read different types of data files. The *core* engine detects the file type using its extension.

Existing data reader plugins are:

- ► ዼ YAMI
- ► & JSON
- ► [©] CSV
- ▶ □ TOML
- ► [©] INI

- ► **⊘** TXT
- **▶ Ø** SLF
- Ø DAT
- CXT

 Output

 Description

 Output

 Description

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version control

Localization Plugins

Definition

Localization plugins are used for translating the applications to other languages. The basic language is English.

► French translation of the **GALACTIC** applications.

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version cor

Applications

Definition

Applications are developed for using the library; they are the interface of the user.

Existing applications are:

- ▶ GALACTIC Laser: for constructing the lattice and exploring data;
- GALACTIC Explorer: for explorating interactively the constructed lattice;
- GALACTIC Ruler: for extracting implication rules;
- GALACTIC Fire: for executing a system of rules.

Architecture
Plugins
Applications
Jupyter notebooks

Jupyter notebooks

jupyter notebooks

The library and its plugins are developed for an easy integration into *jupyter notebooks*:

- drawing lattices;
- displaying reduced contexts;
- displaying basis of rules;
- **.**..

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version control

Collaborative version control

git

The library is developed using the collaboration tool git, in the gitlab of the university. We are using

- pylint and flake8 (with plugins) for testing code quality;
- **tox** for generating tests.

Architecture
Plugins
Applications
Jupyter notebooks
Collaborative version control

Collaborative version control

gitlab-runners

Using *gitlab-runners*, the code is automatically recompiled and rebuilt and tests are ran.

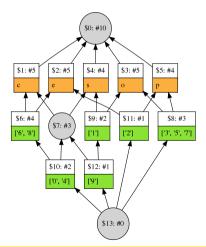
- core: 80 python files; 11949 python lines; 8187 comment lines; 4194 blank lines; 8% unit test coverage;
- plugins: 136 python files; 7451 python lines; 6634 comment lines; 2523 blank lines; 17% unit test coverage;
- ▶ 6 guides (installation, user, practice, experiments, developer, continous integration/deployment)

Digits example

In this example the set of objects is integers from 0 to 9:

 $G = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

and the set of attributes are the mathematical properties:


 $M = \{even, odd, composite, prime, square\}.$

Digits example

digits	even	odd	composite	prime	square
0	×		×		X
1		×			X
2	X			X	
3		X		X	
4	X		X		X
5		X		X	
6	X		X		
7		X		X	
8	X		X		
9		X	×		X

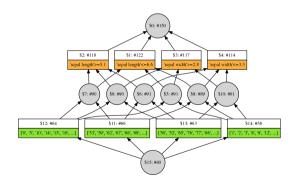
Digits example

Using the Boolean strategy we obtain the following lattice.

Iris example

- this example consists of the iris flower data set, introduced by Ronald Fisher in 1936, represented by 150 samples from three species of Iris; setosa, virginica and versicolor;
- four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.

Iris example


This table shows a part of the data:

sepal length	sepal width	petal length	petal width	class
5.1	3.5	1.4	0.2	Iris-setosa
7.0	3.2	4.7	1.4	Iris-versicolor
6.4	3.2	4.5	1.5	Iris-versicolor
5.8	2.7	5.1	1.9	Iris-virginica

Iris example

Using different kinds of strategy we can explore the iris data set to obtain different results.

Conclusion

- the version 0.4 was published on January 8th, 2022;
 - https://galactic.univ-lr.fr
 - https://ml.univ-lr.fr/sympa/info/galactic
- ▶ the GALACTIC applications, the various manuals and documentation guides are available under certain conditions.

Perspectives

- plugins for sequences (characteristics and strategies):
 - trajectories, and sequences of terms in text mining;
 - DA3T project and two thesis: 2018, 2019;
- maturation of GALACTIC:
 - nicer interface:
 - nicer visualisation of characteristics into the concepts;
 - possibility for the user to specify the strategy in an interactive way for each concept.
- plugins for other description of data (graphs, ...);
- tool for data analysis for the laboratory.

Conclusion

Thank you!

Questions!?