

GALACTIC architecture

The **GALACTIC** Organization <contact@thegalactic.org>

 1 © 2018-2023 the **GALACTIC** Organization. This document is licensed under CC-by-nc-nd (https://creativecommons.org/licenses/bv-nc-nd/4.0/deed.en)

Acronym

GALACTIC stands for

GAlois

LAttices.

Concept

Theory,

Implicational systems and

Closures.

Purpose

GALACTIC framework

Develop a framework on:

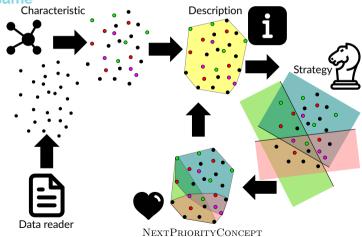
- **Lattice** theory
- Formal Concept Analysis^b.

 $^{\alpha}$ BARBUT, Marc et MONJARDET, Bernard. Ordre et classification, vols. 1 and 2. Hachette, Paris, France, 1970.

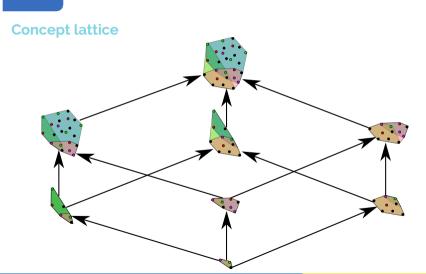
^bGANTER, Bernhard et WILLE, Rudolf. Formal concept analysis: mathematical foundations. Springer Science & Business Media, 1999.

Architecture

La Rochelle Université

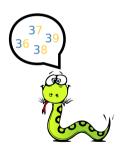

Written in python, Fully extensible

The **GALACTIC** framework is architecturally designed with:


- a core library
- applications
- characteristic plugins
- description plugins
- strategy plugins
- measure plugins
- data reader plugins
- localization plugins

Resume

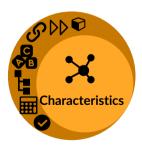
La Rochelle Université



Applications
Collaborative version conti

Architecture

Core


The **GALACTIC** *core* defines the core library, it contains the basic operations and data structures and it implements the new generation algorithm (NextpriorityConcept) inspired from pattern structures.

Characteristic Plugins

Definition

Characteristic plugins define characteristics such as numerical characteristics, boolean characteristics.

Existing characteristic plugins:

- ▶ Ø Boolean characteristics;
- Categorical characteristics;
- & String characteristics;

Definition

La Rochelle Université

Characteristic plugins define characteristics such as numerical characteristics, boolean characteristics.

Existing characteristic plugins:

- S Chain characteristics:

 Output

 Description:

 Output

 Descri
- ► № Sequence characteristics.
- ▶ ₱ Triadic characteristics.

In preparation:

Description Plugins

Definition

Description plugins define predicates and description spaces used to represent and to define data precisely.

Existing description plugins:

- Boolean descriptions;
- Logical descriptions;
- {} Categorical descriptions;
- Mumerical descriptions;

 Mumerical descri
- String descriptions using regex;
- ➤ String descriptions using distances;

Description Plugins

Definition

Description plugins define predicates and description spaces used to represent and to define data precisely.

Existing description plugins:

- Chain descriptions;
- Sequence descriptions;
- ► >> Sequence descriptions using distances;
- ▶ ₱ Triadic descriptions.

In preparation:

Strategy Plugins

Definition

Strategy plugins define the way used to explore data, it uses descriptions to generate predecessors for each concept in the lattice.

Existing strategy plugins:

- ▶ Ø Boolean strategy;
- Logical strategy;
- ▶ Categorical strategy;
- Numerical basic strategy;
- Numerical quantile strategy;
- String strategy;
- ➤ String strategy using distances;

Strategy Plugins

Definition

Strategy plugins define the way used to explore data, it uses descriptions to generate predecessors for each concept in the lattice.

Existing strategy plugins:

- Chain strategy;
- Sequence strategy;
- ► > Sequence strategy using distances;
- ➤ Triadic strategy.

In preparation:

\$\times \text{Graph} \text{ strategy.}

Strategy Plugins

Definition

Strategy plugins define the way used to explore data, it uses descriptions to generate predecessors for each node in the lattice.

There are 3 \triangle meta-strategies in the core library:

- ▶ **T** Limit filter which limits the predecessors to those whose measure does not exceed the limit:
- Selection filter which selects the best or the worst predecessors;
- Conditioned strategy which triggers the execution of inner strategies when some conditions are met.

Measure Plugins

La Rochelle Université

Definition

Measure plugins are parameters of the *filter strategies* predefined in the core library.

There are 3 measures in the core library:

- \(\perp \) predecessor Cardinality;
- ▼ successor Cardinality;
- R Confidence.

One measure plugin has been developed:

Entropy of the predecessor relatively to the successor.

Data Reader Plugins

Definition

Data readers plugins are used to read different types of data files. The *core* engine detects the file type using its extension.

Existing data reader plugins are:

- ► ዼ YAMI
- ► ዼ JSON
- ► ¹2 CSV
- \[
 \text{\text{\$\omega\$}} TOML
 \]
- ► [®] INI

- ► **⊘** TXT
- ▶ SLF
- ▶ Ø DAT
- CXT

 Output

 Description

 Output

 Description

Localization Plugins

Definition

Localization plugins are used for translating the applications to other languages. The basic language is English.

► French translation of the **GALACTIC** applications.

Applications

Definition

Applications are developed for using the library; they are the interface of the user.

Existing applications are:

- ▶ GALACTIC Laser: for constructing the lattice and exploring data;
- GALACTIC Explorer: for explorating interactively the constructed lattice;
- GALACTIC Ruler: for extracting implication rules;
- GALACTIC Fire: for executing a system of rules.

Collaborative version control

git

The library is developed using the collaboration tool git, in the gitlab of the university. We are using

- pylint and flake8 (with plugins) for testing code quality;
- **tox** for generating tests.

Collaborative version control

gitlab-runners

Using *gitlab-runners*, the code is automatically recompiled and rebuilt and tests are ran.

- core: 80 python files; 11949 python lines; 8187 comment lines; 4194 blank lines; 8% unit test coverage;
- plugins: 136 python files; 7451 python lines; 6634 comment lines; 2523 blank lines; 17% unit test coverage;
- ▶ 6 guides (installation, user, practice, experiments, developer, continous integration/deployment)

Conclusion

- the version 0.4 was published on January 8th, 2022;
 - https://galactic.univ-lr.fr
 - https://ml.univ-lr.fr/sympa/info/galactic
- ▶ the GALACTIC applications, the various manuals and documentation guides are available under certain conditions.