
galactic developer guide

The Galactic Organization <contact@thegalactic.org>

0.3.0

mailto:contact@thegalactic.org


galactic developer guide 0.3.0

Contents

Preamble 2

1 GALACTIC platform 2

2 Data readers 4

3 Characteristics 4

4 Descriptions 5

5 Strategies 7
5.1 Basic strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Meta strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Measures 10

References 11

List of Figures

1 the NEXTPRIORITYCONCEPT algorithm process . . . . . . . . . . . . . . . . . . . . . . . 3
2 Characteristic plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Description plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Basic strategy plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Meta strategy andmeasure plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Preamble

1

1 GALACTIC platform

GALACTIC is a development platform for a generic implementation of the NEXTPRIORITYCONCEPT
algorithm (Demko et al. 2020) allowing easy integration of newplugins for characteristics, descriptions,
strategies andmeasures useful for meta-strategies.

The GALACTIC eco-system is organized with:

1© 2018-2021 the Galactic Organization. This document is licensed under CC-by-nc-nd
(https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en)

The Galactic Organization <contact@thegalactic.org> 2

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
mailto:contact@thegalactic.org


galactic developer guide 0.3.0

Data reader

Description

Strategy

Next Priority Concept

Characteristic

Figure 1: the NEXTPRIORITYCONCEPT algorithm process

• A corewhich implements the NEXTPRIORITYCONCEPT algorithm and a lot of tool for visualizing
lattices and reduced contexts in python notebooks;

• A set of characteristic plugins defining new types of data;

• A set of description plugins defining new types of descriptions and their associated predicates;

• A set of strategy plugins defining new types of strategies for a given characteristic;

• A set ofmeasure plugins usefull for the filter meta-strategies;

• A set of data reader plugins allowing GALACTIC to read any type of data file;

• A set of applications using the core library and the di�erent plugins;

• A set of localization plugins for translating the di�erent applications.

Each plugin must register with the core library by declaring an entry point in the configuration file of
the setuptools2 (setup.py) named py_galactic_extension.

entry_points={
"py_galactic_extension": [

"my_plugin = my_plugin:get_classes"
]

},

The declared function (get_classes in the example) will inform the library that a new extension is
available.
2https://pypi.org/project/setuptools/

The Galactic Organization <contact@thegalactic.org> 3

https://pypi.org/project/setuptools/
mailto:contact@thegalactic.org


galactic developer guide 0.3.0

The construction of the lattice is carried out as shown in FIG. 1: the data are read from a file; char-
acteristics are extracted; a description is produced for each concept; strategies generate selectors
for the exploration of potential new concepts and the NEXTPRIORITYCONCEPT algorithm selects the
predecessors andmaintains the lattice structure.

2 Data readers

Data readers are plugins of the py-galactic-core engine that allow to read new data file formats.

A data reader pluginmust declare a class inheriting from the galactic.concepts.DataReader
class and implementing the readmethod and defining the extensions property.

• read(cls, data_file: TextIO): Iterable[Any] that reads a file and produces
an iterable of objects. The readmethod is responsible for reading an already opened file and
must return the data read either as a dictionary (if the individuals are named) or as a list.

• extensions(cls): Iterator[str] that produces the list of file extensions supported
by this plugin. The extensions property must return an iterator over all the file extensions
supported by the plugin.

import io
from typing import Union, Iterable, Mapping

from galactic.concepts import DataReader

class MyDataReader(DataReader):
@classmethod
def read(cls, data_file: io.TextIOBase) -> Union[Iterable, Mapping]:

# must return the data read from data_file

@property
def extensions(self):

# must return an iterator over the supported file extensions
# here: .my
return iter([".my"])

def get_reader():
return MyDataReader()

3 Characteristics

Each concept is composed of a subset of objects together with a set of predicates describing them,
each predicates being specific to one type of characteristic. Such generic use of predicates makes it
possible to consider heterogeneous data as input, i.e. digital, discrete or more complex data.

The Galactic Organization <contact@thegalactic.org> 4

mailto:contact@thegalactic.org


galactic developer guide 0.3.0

myplugin

galactic.characteristics

MyCharacteristic

__eq__(self, other: Any): bool
__hash__(self): int
__str__(self): str
__call__(self, individual: Any): Any

Characteristic

The characteristic
is a callable objet
able to extract
a value from
any python object.

Figure 2: Characteristic plugin

A characteristic plugin (cf FIG. 2) is responsible of extracting a value from a python object. It must
implement the __call__magic method which will be applied to each individual of the population.
This method should return the characteristic of the individual. It’s also reasonable to implement the
other magic methods __eq__, __hash__, __str__.

Characteristic plugins are plugins of thepy-galactic-core engine that allow to define newcharacteristics
on individuals.

An characteristic plugin should declare a class inheriting from the

galactic.characteristics.Characteristic

class or preferably from one of its subclass and implementing the __call__method.

from galactic.characteristic import Characteristic

class MyCharacteristic(Characteristic):
def __call__(self, individual=None):

# Return something

4 Descriptions

The algorithm introduces the notion of description δ as an application to provide predicates describing
a set of objectsA according to their characteristics, that corresponds to a concept (A, δ(A)). At each

The Galactic Organization <contact@thegalactic.org> 5

mailto:contact@thegalactic.org


galactic developer guide 0.3.0

iteration, predicates describing the objects A of the current concept are computed “on the fly” by
a specific treatment for each type of characteristics, depending on whether it’s digital, discrete or
more complex, and the final description δ is the union of these predicates. In order to obtain a lattice,
the description must verify δ(A) v δ(A′) forA′ ⊆ A. Let us notice that this property is verified by
the "generalized convex hull" of a set of objects (the intersection of two convex hull is a convex hull),
therefore predicates describing the borders of a convex hull can be used as a description.

Adescriptionplugin (cf FIG.3)will beused todescribeacollectionof individualsusinga setofpredicates.
It usually defines a newpredicate class andanewdescription class. Thedescription class is responsible
of calculating a set of descriptors representing the convex hull of a collection of individuals. These
descriptors must be predicates that describe half-spaces on the set of individuals. The convex hull is
represented by the intersection of the set of descriptors.

myplugin

galactic.characteristics

galactic.descriptions

MyPredicate

__eq__(self, other: Any): bool
__hash__(self): int
__str__(self): str
__call__(self, individual: Any): Optional[bool]

MyDescription

__eq__(self, other: Any): bool
__hash__(self): int
__call__(self, individuals: Collection[Any]): Iterator[MyPredicate]

Characteristic

PredicateDescription

space: Tuple[Characteristic]

The description can be called
on any collection of individuals.
It produces a set of descriptors
representing the convex hull
of the individuals.

A predicate defines
a half-space
for the set of the individuals.

contains

produces

Figure 3: Description plugin

Description plugins are plugins of the py-galactic-core engine that allow to define new predicates and
new description spaces on individuals.

A description plugin should declare a class inheriting from the

The Galactic Organization <contact@thegalactic.org> 6

mailto:contact@thegalactic.org


galactic developer guide 0.3.0

galactic.descriptions.Predicate

class or preferably from one of its subclass and implementing the __call__method. This method
must return True or False.
from galactic.descriptions import Predicate

class MyPredicate(Predicate):
def __call__(self, individual=None):

# Return True or False

Usually, a description plugin declares a class inheriting from the

galactic.descriptions.Description

class and implementing the __call__method. This methodmust yield a set of minimal predicates
describing a set of individuals.

class MyDescription(Description):
def __call__(

self,
individuals: Iterable = None

) -> Iterator[Predicate]:
# yield instances of MyPredicate

5 Strategies

The algorithmalso introduces the notion of strategy σ to provide selectors generating the predecessors
of a concept (A, δ(A)). The selectors propose a way to refine or cut the description δ(A). The purpose
of a strategy plugin is then to produce a set of selectors restricting the set of individuals in order to
obtain new potential concepts containing fewer individuals. The NEXTPRIORITYCONCEPT algorithm
will select among the set of selectors produced by the strategies those that will give rise to e�ective
concepts (i.e. with a reduction of individuals), while maintaining the constraints retaining the lattice
property.

Several strategies are possible to generate predecessors of a concept, going from the naive strategy
classicaly used in FCA that consider all the possible selectors to generate a maximal number of prede-
cessors, thus a huge lattice. Let us observe that selectors are only used for the predecessors generation,
they are not kept neither in the description or in the final set of predicates. Therefore, choosing or test-
ing several strategies at each iteration in a user driven pattern discovery approachwould be interesting.
It is also possible to introduce a filter (or meta-strategy) on the selectors.

Strategies are plugins of the py-galactic-core engine that allow to create new predicates applicable to
individuals.

There are two kinds of strategies:

• basic strategy
• meta strategy

The Galactic Organization <contact@thegalactic.org> 7

mailto:contact@thegalactic.org


galactic developer guide 0.3.0

5.1 Basic strategies

A basic strategy plugin proposes selectors to the NEXTPRIORITYCONCEPT algorithm. These selectors
make it possible to restrict the set of individuals. A basic strategy must be initialized with a description
andmust implement the selectorsmethod (cf FIG. 4).

A basic strategy plugin must declare a class inheriting from the

galactic.strategies.BasicStrategy

class and implementing the selectorsmethod. This methodmust produce an iterator over predic-
ates defined by a description plugin.

from typing import Iterable

from my_characteristic_plugin import MyCharacteristic
from my_description_plugin import MyDescription, MyPredicate
from galactic.strategies import BasicStrategy
from galactic.concepts import Concept

class MyBasicStrategy(BasicStrategy):

def __init__(self, description: MyDescription):
# initialize the strategy

def selectors(self, concept: Concept):
# yield instances of MyPredicate

def get_classes():
return {"strategy.myplugin.MyBasicStrategy": MyBasicStrategy}

5.2 Meta strategies

The core of the GALACTIC library defines twometa-strategies that act as filters for other strategies:

• LimitFilterwhich selects predecessors whose measure is above/below a threshold;

• SelectionFilterwhich selects the best/worst predecessors relatively to a measure.

They are initialized with a set of strategies and with a measure. A measure is a class for measuring
a predicate on a concept. It must implement the __call__magic method with a concept and a
predicate as parameters (cf FIG. 5).

The Galactic Organization <contact@thegalactic.org> 8

mailto:contact@thegalactic.org


galactic developer guide 0.3.0

mybasicplugin

galactic.strategies

galactic.descriptions

MyBasicStrategy

__init__(self, description: Description)
selectors(self, concept: Concept): Iterator[Predicate]

Strategy

descriptions: Iterator[Description]

BasicStrategy

Predicate

A basic strategy produces
a set of selectors
from a description space.

Each selector could
lead to a predecessor
of the concept

A basic strategy should be
initialized with a description.

produces

Figure 4: Basic strategy plugin

The Galactic Organization <contact@thegalactic.org> 9

mailto:contact@thegalactic.org


galactic developer guide 0.3.0

mymeasureplugin

galactic.strategies

MyMeasure

__call__(self, concept: Concept, predicate: Predicate): float

Strategy

descriptions: Iterator[Description]

MetaStrategy

strategies: Tuple[Strategy]

__init__(self, *args: Strategy)
selectors(self, concept: Concept): Iterator[Predicate]

Filter

measure: Measure

__init__(self, *args: Strategy, measure: Measure)

Measure LimitFilter SelectionFilter

A measure can be called
on a concept for a specific
predicate.

contains

Figure 5:Meta strategy andmeasure plugins

A meta strategy plugin must declare a class inheriting from the

galactic.strategies.MetaStrategy

class and implementing the selectorsmethod. This methodmust produce an iterator over predic-
ates defined by the inner strategies. There are two predefinedmeta-strategies in the core library:

• galactic.strategies.LimitFilter
• galactic.strategies.SelectionFilter

which use ameasure to choose which predicates to keep. This is the best way to usemeta-strategies.

6 Measures

Measures are plugins (cf FIG. 5) of the py-galactic-core engine that allow to use the predefinedmeta-
strategies

• galactic.strategies.LimitFilter
• galactic.strategies.SelectionFilter

Ameasure plugin must declare a class inheriting from the

The Galactic Organization <contact@thegalactic.org> 10

mailto:contact@thegalactic.org


galactic developer guide 0.3.0

galactic.strategies.Measure

class and implementing the __call__method. This methodmust return a float value evaluating a
predicate applied to a set of individuals.

from typing import Iterable

from galactic.characteristics import Predicate
from galactic.concept import Concept
from galactic.strategies import Measure

class MyMeasure(Measure):
def __call__(

self,
concept: Concept,
predicate: Predicate = None

):
# must return a float value evaluating the predicate
# applied on the individuals

def get_classes():
return {"measure.myplugin.MyMeasure": MyMeasure}

References

Demko, Christophe, Karell Bertet, Cyril Faucher, Jean-François Viaud, and Sergei O. Kuznetsov. 2020.
‘NEXTPRIORITYCONCEPT: A New and Generic Algorithm Computing Concepts from Complex and
Heterogeneous Data.’ Theoretical Computer Science 845: 1–20. https://doi.org/https://doi.org/10.1
016/j.tcs.2020.08.026.

The Galactic Organization <contact@thegalactic.org> 11

https://doi.org/10.1016/j.tcs.2020.08.026
https://doi.org/10.1016/j.tcs.2020.08.026
mailto:contact@thegalactic.org

	Preamble
	GALACTIC platform
	Data readers
	Characteristics
	Descriptions
	Strategies
	Basic strategies
	Meta strategies

	Measures
	References

