galactic developer guide

The Galactic Organization <contact@thegalactic.org>

mailto:contact@thegalactic.org

galactic developer guide 0.2.0

Contents
1 Introduction 2
2 Datareaders 2
3 Characteristics 3
4 Descriptions 4
5 Strategies 5
51 Basicstrategies 5
5.2 Metastrategies e e 6
6 Measures 6

List of Figures

1 Introduction

oloale]

This guide has been designed to allow developers to extend the py-galactic-core engine using 4 kinds

py-galactic is a python package for studying formal concept analysis.

of extensions:

+ datareader plugins

+ characteristic plugins
« description plugins

« strategy plugins

+ measure plugins

2 Datareaders

Data readers are plugins of the py-galactic-core engine that allow to read new data file formats.

'© 2018-2020 the Galactic Organization. This document is licensed under CC-by-nc-nd
(https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en)

The Galactic Organization <contact@thegalactic.org> 2

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
mailto:contact@thegalactic.org

galactic developer guide 0.2.0

A data reader plugin must declare a class inheriting from the galactic.concepts.DataReader
class and implementing the read method and defining the extens-ions property.

The read method is responsible for reading an already opened file and must return the data read
either as a dictionary (if the individuals are named) or as a list.

The extensions property must return an iterator over all the file extensions supported by the
plugin.

import 1o

from typing import Union, Iterable, Mapping

from galactic.concepts import DataReader

class MyDataReader (DataReader):
@classmethod
def read(cls, data_file: io.TextIOBase) -> Union[Iterable, Mapping]:
must return the data read from data_file

@property

def extensions(self):
must return an iterator over the supported file extensions
here: .my
return diter([".my"])

def get_reader():
return MyDataReader ()

Finally, using the setuptools system, the package must declare an entry pointin the setup. py file.
entry_points={
"py_galactic_data_reader": [
"my_reader = my_data_reader:get_reader"

b

3 Characteristics

Characteristic plugins are plugins of the py-galactic-core engine that allow to define new characteristics
on individuals.

The Galactic Organization <contact@thegalactic.org> 3

mailto:contact@thegalactic.org

galactic developer guide 0.2.0

An characteristic plugin should declare a class inheriting from the
galactic.characteristics.Characteristic

class or preferably from one of its subclass and implementing the __call__ method.
from galactic.characteristic import Characteristic

class MyCharacteristic(Characteristic):
def __call__(self, individual=None):
Return something

4 Descriptions

Description plugins are plugins of the py-galactic-core engine that allow to define new predicates and
new description spaces on individuals.

A description plugin should declare a class inheriting from the
galactic.descriptions.Predicate

class or preferably from one of its subclass and implementing the __call__ method. This method
must return True or False.
from galactic.descriptions import Predicate

class MyPredicate(Predicate):
def __call__(self, individual=None):
Return True or False

Usually, a description plugin declares a class inheriting from the
galactic.descriptions.Description

class and implementing the __call__ method. This method must yield a set of minimal predicates
describing a set of individuals.
class MyDescription(Description):
def __call__(
self,
individuals: Iterable = None
) -> Iterator[Predicate]:
yield instances of MyPredicate

The Galactic Organization <contact@thegalactic.org> 4

mailto:contact@thegalactic.org

galactic developer guide 0.2.0

5 Strategies

Strategies are plugins of the py-galactic-core engine that allow to create new predicates applicable to
individuals.

There are two kinds of strategies:

+ basic strategy
* meta strategy

5.1 Basic strategies

A basic strategy plugin must declare a class inheriting from the
galactic.strategies.BasicStrategy

class and implementing the selectors method. This method must produce an iterator over predi-
cates defined by a description plugin.

The __init__ method must set avalue forthe _descriptionfield.
from typing import Iterable

from my_characteristic_plugin import MyCharacteristic

from my_description_plugin import MyDescription, MyPredicate
from galactic.strategies import BasicStrategy

from galactic.concepts import Concept

class MyStrategy(BasicStrategy):

def __init__(self, characteristic: MyCharacteristic):
self._description = MyDescription(characteristic)

def selectors(self, concept: Concept):
yield instances of MyPredicate

def get_classes():
return {"strategy.myplugin.MyStrategy": MyStrategy}

Finally, using the setuptools system, the package must declare an entry point in the setup. py file.

The Galactic Organization <contact@thegalactic.org> 5

mailto:contact@thegalactic.org

galactic developer guide 0.2.0

entry_points={
"py_galactic_extension": [
"my_plugin = my_plugin:get_classes"

b

5.2 Meta strategies

A meta strategy plugin must declare a class inheriting from the
galactic.strategies.MetaStrategy

class and implementing the selectors method. This method must produce an iterator over predi-
cates defined by the inner strategies. There are two predefined meta-strategies in the core library:

« galactic.strategies.LimitFilter
+ galactic.strategies.SelectionFilter

which use a measure to choose which predicates to keep. This is the best way to use meta-strategies.

6 Measures

Measures are plugins of the py-galactic-core engine that allow to use the predefined meta-strategies

« galactic.strategies.LimitFilter
« galactic.strategies.SelectionFilter

A measure plugin must declare a class inheriting from the
galactic.strategies.Measure

class and implementing the __call__ method. This method must return a float value evaluating a
predicate applied to a set of individuals.

from typing import Iterable
from galactic.characteristics import Predicate

from galactic.concept import Concept
from galactic.strategies +import Measure

class MyMeasure(Measure):

The Galactic Organization <contact@thegalactic.org> 6

mailto:contact@thegalactic.org

galactic developer guide 0.2.0

def __call__(
self,
concept: Concept,
predicate: Predicate = None

must return a float value evaluating the predicate
applied on the individuals

def get_classes():
return {"measure.myplugin.MyMeasure": MyMeasure}

Finally, using the setuptools system, the package must declare an entry point in the setup. py file.
entry_points={
"py_galactic_extension": [
"my_plugin = my_plugin:get_classes"

s

The Galactic Organization <contact@thegalactic.org> 7

mailto:contact@thegalactic.org

	Introduction
	Data readers
	Characteristics
	Descriptions
	Strategies
	Basic strategies
	Meta strategies

	Measures

