Antitone Galois connection
Polarities
In mathematics an antitone Galois connection is a couple of antitonic functions (called polarities) \((\alpha, \beta)\) from the power set of one set to the power set of another set: \(\alpha:2^E\rightarrow 2^F\), \(\beta:2^F\rightarrow 2^E\)
such that:
\(f \subseteq \alpha(e) \subseteq F\) if and only if \(e \subseteq \beta(f) \subseteq E\)
[1]:
[2]:
connection = IntegerConnection([2, 3, 4, 5, 6], [12, 18, 24, 36, 48, 30, 60])
[3]:
connection.polarities
[3]:
(<MultiplePolarity at 0x793a70751d50>, <DivisorPolarity at 0x793a70678850>)
[4]:
list(connection.polarities[0](elements={2, 5}))
[4]:
[30, 60]
[5]:
list(connection.polarities[1](elements={30}))
[5]:
[2, 3, 5, 6]
Closures
If \((\alpha, \beta)\) is an antitone Galois connection from \(2^E\) to \(2^S\), \((\beta \circ \alpha)\) and \((\alpha \circ \beta)\) are closure operators on respectively \(E\) and \(F\).
[6]:
connection.closures
[6]:
(compose(<DivisorPolarity at 0x793a70678850>, <MultiplePolarity at 0x793a70751d50>),
compose(<MultiplePolarity at 0x793a70751d50>, <DivisorPolarity at 0x793a70678850>))
[7]:
list(connection.closures[0](elements={2, 3}))
[7]:
[2, 3, 6]
[8]:
list(connection.closures[1](elements={30}))
[8]:
[30, 60]